2019-08-10
El modelo se puede expresar de la siguiente manera
## [1] 0.005680844
## [1] -0.2046813
\[H_0: \rho = 0 \\ H_1: \rho \neq 0\]
## ## Pearson's product-moment correlation ## ## data: Datos$gasto_militar17 and Datos$gasto_edu16 ## t = 0.043265, df = 58, p-value = 0.9656 ## alternative hypothesis: true correlation is not equal to 0 ## 95 percent confidence interval: ## -0.2486025 0.2592316 ## sample estimates: ## cor ## 0.005680844
Conclusión: Como el P-value es mayor a \(\alpha\) no existe evidencia para rechazar la hipotesis nula.
\[H_0: \rho = 0 \\ H_1: \rho \neq 0\]
## ## Pearson's product-moment correlation ## ## data: df_reg$gasto_militar17 and df_reg$gasto_edu16 ## t = -1.5787, df = 57, p-value = 0.1199 ## alternative hypothesis: true correlation is not equal to 0 ## 95 percent confidence interval: ## -0.43781539 0.05424418 ## sample estimates: ## cor ## -0.2046813
El modelo tentativo se puede expresar de la siguiente manera
\[G.Edu = \beta_0 + \beta_1 \ G.Militar\]
## ## Call: ## lm(formula = df_reg$gasto_edu16 ~ df_reg$gasto_militar17) ## ## Residuals: ## Min 1Q Median 3Q Max ## -2.92035 -0.83829 0.02911 0.80882 2.58509 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 4.8092 0.3058 15.727 <2e-16 *** ## df_reg$gasto_militar17 -0.2559 0.1621 -1.579 0.12 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 1.313 on 57 degrees of freedom ## Multiple R-squared: 0.04189, Adjusted R-squared: 0.02509 ## F-statistic: 2.492 on 1 and 57 DF, p-value: 0.1199